Tuesday, August 15, 2017

Image of the Day: A New Paint Scheme for the Space Launch System's Twin Solid Rocket Boosters...

An artist's concept of NASA's Space Launch System rocket sporting a new paint scheme on its twin Solid Rocket Boosters.

NASA recently unveiled a new art concept depicting the Space Launch System (SLS) rocket in an updated paint scheme as progress continues to be made towards its 2019 launch on Exploration Mission (EM)-1. As mentioned in this previous entry, engineers at Orbital ATK began painting black marks on the SLS' Solid Rocket Boosters (SRB) that will be used for photogrammetry...the science of using photography to help measure distances between objects. In the case of EM-1, the black marks will allow engineers on the ground to discern the distance between the SRBs and SLS' core stage upon booster separation during launch. The photogrammetric markings will also be used on components of the Orion spacecraft to analyze the distance between the capsule and the core stage as the spacecraft separates from SLS after reaching Earth orbit.

The black marks are nothing new; the SRBs have been sporting these paint schemes since the days of the space shuttle program.

Monday, August 14, 2017

A Dragon Is Once Again Station-Bound...

A Falcon 9 rocket carrying the Dragon CRS-12 spacecraft launches from NASA's Kennedy Space Center in Florida...on August 14, 2017.

NASA Cargo Launches to Space Station Aboard SpaceX Resupply Mission (Press Release)

Experiments seeking a better understanding of Parkinson’s disease and the origin of cosmic rays are on their way to the International Space Station aboard a SpaceX Dragon spacecraft following today’s 12:31 p.m. EDT launch.

Carrying more than 6,400 pounds of research equipment, cargo and supplies, the spacecraft lifted off on a Falcon 9 rocket from Launch Complex 39A at NASA's Kennedy Space Center in Florida on the company’s 12th commercial resupply mission. It will arrive at the space station Wednesday, Aug. 16, at which time astronauts Jack Fischer of NASA and Paolo Nespoli of ESA (European Space Agency) will use the space station’s robotic arm to capture it.

NASA Television and the agency’s website will provide live coverage of spacecraft rendezvous and capture beginning at 5:30 a.m., followed by installation coverage at 8:30 a.m.

Research materials flying inside the Dragon's pressurized area include an experiment to grow large crystals of leucine-rich repeat kinase 2 (LRRK2), a protein believed to be the greatest genetic contributor to Parkinson’s disease. Gravity keeps Earth-grown versions of this protein too small and too compact to study. This experiment, developed by the Michael J. Fox Foundation, Anatrace and Com-Pac International, will exploit the benefits of microgravity to grow larger, more perfectly-shaped LRRK2 crystals for analysis on Earth. Results from this study could help scientists better understand Parkinson’s and aid in the development of therapies.

The Kestrel Eye (NanoRacks-KE IIM) investigation is a microsatellite carrying an optical imaging payload, including a commercially available telescope. This investigation, sponsored by the U.S. National Laboratory, tests the concept of using microsatellites in low-Earth orbit to support critical operations, such as lowering the cost of Earth imagery in time-sensitive situations such as tracking severe weather and detecting natural disasters.

The Cosmic Ray Energetics and Mass instrument will be attached to the Japanese Experiment Module Exposed Facility on the space station, and measure the charges of cosmic rays. The data collected from its three-year mission will address fundamental questions about the origins and histories of cosmic rays, building a stronger understanding of the basic structure of the universe.

Dragon is scheduled to depart the space station in mid-September, returning more than 3,300 pounds of science, hardware and crew supplies to Earth.

For more than 16 years, humans have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies, making research breakthroughs not possible on Earth to enable long-duration human and robotic exploration into deep space. A global endeavor, more than 200 people from 18 countries have visited the unique microgravity laboratory that has hosted more than 1,900 research investigations from researchers in more than 95 countries.


The Falcon 9's first stage booster is about to touch down at Landing Zone 1 in Cape Canaveral after launching the Dragon CRS-12 capsule to the International Space Station...on August 14, 2017.

Wednesday, August 9, 2017

EM-2 Update: Assembly Is Completed on Orion's Windows at a Local SoCal Manufacturer...

The window panel that will be incorporated aboard the Orion spacecraft for Exploration Mission-2 is on display at AMRO Fabricating Corp. in South El Monte, California.
NASA / AMRO Fabricating Corp.

Orion Supplier Readies Shipment of Orion Astronauts’ Windows on the Universe (News Release)

When the first crew of astronauts flies aboard the Orion spacecraft, they will be able to look through a window and view the Moon and Earth from their deep-space vantage point. The window panel that will provide that view is ready for shipment to NASA. AMRO Fabricating Corp., of South El Monte, California, has completed a section of the Orion pressure vessel, or underlying structure of the spacecraft that will send astronauts farther than humans have ever traveled before on Exploration Mission-2 (EM-2).

Orion’s four windows are contained in one of three cone panels that AMRO is manufacturing for NASA and Orion prime contractor, Lockheed Martin. The spacecraft’s pressure vessel has seven structural elements, including the three cone panels. AMRO will ship the panel to NASA’s Michoud Assembly Facility in New Orleans by the end of August, where it will be outfitted with strain gauges and wiring for monitoring purposes and joined together with other pieces of the pressure vessel scheduled to arrive at Michoud in the coming months.

“Many of our suppliers around the country are already starting to manufacture elements of the Orion for our first mission with astronauts,” said Paul Marshall, assistant program manager for Orion. “Their work enables NASA’s push to expand our boundaries into space and eventually our voyage to Mars.”

The pressure vessel forms the sealed environment inside where astronauts will live and the structure upon which all the other elements of the spacecraft are built and integrated. The components of Orion’s pressure vessel are joined using the friction-stir welding process, which bonds the pieces by transforming metals from a solid into a plastic-like state and then forging a bond between the two metal components. Once all pressure vessel elements are welded together, the spacecraft will be sent to Kennedy Space Center in Florida for outfitting, processing and launch.

Other than several small changes to allow for interfaces with crew equipment or mounting of hardware specific to EM-2, the overall structure, manufacturing process and mass of the pressure vessel is the same as it is for the structure that will fly on the first mission of Orion and SLS, now that engineers have optimized the design of Orion’s structure. Engineers are making progress on the EM-1 spacecraft, currently being assembled at Kennedy ahead of its 2019 launch.

AMRO is a third generation, family owned, small business manufacturer that specializes in building metallic structures for spacecraft and launch vehicles. In addition to its work for Orion, AMRO makes elements of the Space Launch System core stage and provided components for the space shuttle. This past February, AMRO successfully graduated from the NASA Mentor-Protégé Program – a program through the Office of Small Business Programs which encourages NASA prime contractors to assist eligible protégés, thereby enhancing the protégés’ capabilities to perform on NASA contracts and subcontracts.

“I speak for everyone in the NASA Office of Small Business Programs when I express how proud we are of the tremendous contributions the AMRO Fabricating Corporation is making to the NASA mission,” said Glenn Delgado, associate administrator of the Office of Small Business Programs in Washington. “Their growth and achievements are a shining example of what can be accomplished by our protégés. We look forward to AMRO’s continued success.”

Exploration Mission-2 will be NASA’s first mission with crew in a series of missions in the proving ground, an area of space around the Moon where crew can build and test systems needed to prepare for the challenge of missions to Mars. The mission will launch from NASA’s Kennedy Space Center in Florida in the early 2020s.

Source: NASA.Gov

Thursday, August 3, 2017

Photo of the Day: Inside the ISS' Expandable Habitat...

NASA astronaut Randy Bresnik looks through the hatch of the Bigelow Expandable Activity Module aboard the International Space Station...on July 31, 2017.

A Look Inside the Space Station's Experimental BEAM Module (News Release)

NASA astronaut Randy Bresnik looks through the hatch of the International Space Station's Bigelow Expandable Activity Module (BEAM) on July 31, 2017. He shared this photo on social media on August 2, commenting, "Ever wonder how you look when you enter a new part of a spacecraft? Well, this is it. First time inside the expandable BEAM module."

The BEAM is an experimental expandable module launched to the station aboard SpaceX's eighth commercial resupply mission on April 8, 2016, and fully expanded and pressurized on May 28. Expandable modules weigh less and take up less room on a rocket than a traditional module, while allowing additional space for living and working. They provide protection from solar and cosmic radiation, space debris, and other contaminants. Crews traveling to the Moon, Mars, asteroids, or other destinations may be able to use them as habitable structures.

The BEAM is just over halfway into its planned two-year demonstration on the space station. NASA and Bigelow are currently focusing on measuring radiation dosage inside the BEAM. Using two active Radiation Environment Monitors (REM) inside the module, researchers at NASA’s Johnson Space Center in Houston are able to take real-time measurements of radiation levels.

Source: NASA.Gov

Wednesday, August 2, 2017

EM-1 Update: SLS Side Boosters Inch Closer to Launch...

Orbital ATK technicians apply photogrammetric markings on completed segments for the solid rocket boosters that will fly on Exploration Mission-1 in 2019.
Orbital ATK

Space Launch System Solid Rocket Boosters ‘on Target’ for First Flight (News Release)

Production of the five-segment powerhouse motors for the Space Launch System (SLS) solid rocket boosters is on target at prime contractor Orbital ATK’s facilities in Utah, with 10 motor segments cast with propellant and four of those segments complete. Following propellant casting, the finished segments were evaluated using non-destructive techniques, such as x-ray, to ensure they met quality standards, and the exterior cases were painted white with black-and-white photogrammetric markings. All motor segments will ultimately be shipped to Kennedy Space Center, where they will be integrated with forward and aft booster structures and then with the SLS core stage.

The markings on the outside of the complete boosters look like black-and-white checkerboards and serve as “targets” for cameras located in strategic locations on and around the vehicle and will be used for photogrammetry, the science of using photography to help measure distances between objects.

In addition to the boosters, black-and-white photogrammetric targets will also appear on the SLS core stage, the interim cryogenic propulsion stage and the Orion stage adapter. On Orion, NASA’s deep-space exploration spacecraft, photogrammetric markings will appear on the spacecraft adapter. The mobile launcher will also have photogrammetric markings. In addition, certain elements of the integrated stack, like the launch vehicle stage adapter, have photogrammetric markings on the interior rather than the exterior.

Cameras will be located on Orion, on the rocket’s core stage, on the interior of the launch vehicle stage adapter, on the ground and on the mobile launcher. The cameras will be able to more easily track the vehicle’s position in space by fixing on the black-and-white checkerboard targets. NASA’s photogrammetry analysts will then use software to process the images from the cameras to measure distances, such as between the boosters and the core stage after those elements separate. Engineers are also interested in measuring the booster nozzles’ clearance from the mobile launcher and the entire vehicle’s clearance from the mobile launch tower shortly after liftoff.

One area engineers are particularly interested in is how the SLS solid rocket boosters, the largest ever manufactured for flight, will separate from the core stage. “Booster separation is influenced by several factors — their length, the configuration of the separation motors and the timing of separation,” explained Alex Priskos, SLS systems engineering & integration manager. “The longer separation is delayed, the greater the clearance will be. However, waiting longer adversely impacts performance. Our job is to balance these factors.”

Engineers designed SLS using state-of-the-art 3D software models and analysis, explained Beth St. Peter, SLS imagery integration lead. “As accurate as those models are, photogrammetry will provide real-life ‘truth data’ on separation events and other key points. And for the first flight of SLS, gathering this real-world data on how the vehicle performs compared to the models is crucial.”

Although NASA has used photogrammetry since the days of the Saturn moon rockets and the space shuttle, use of the technology has come a long way, St. Peter said, primarily due to advances in being able to place digital imagery systems on launch vehicles.

SLS and Orion will incorporate different types of checkerboard patterns, or photogrammetric targets, which will be used for different types of measurements, noted David Melendrez, Orion’s lead for imagery integration at Johnson Space Center. “The big squares will be used to measure general vehicle motion and ground clearances. Smaller checkerboards and elongated markings will be used to measure more complicated three-dimensional motions of the boosters relative to the core stage during their separation, about two minutes into the spaceflight.”

On some parts of the rocket, smaller circular markings will help the cameras and photogrammetric software measure separation events, like Orion’s separation from the interim cryogenic propulsion stage. “Some of these smaller markings will also have retro-reflective centers to help improve our ability to see them under the dark conditions we’re likely to encounter on-orbit,” Melendrez said.

In the final design, the photogrammetric checkerboards will replace the orange and gray stripes that had been previously considered. “Designing and building these deep space exploration systems is an evolutionary process,” Priskos said. “In the beginning, you define a mission and a basic architecture to take you where you want to go. The details might be a little fuzzy at first, but gradually, like a camera zooming in closer and closer, those details are revealed. This is where we are with SLS and Orion.”

On launch day — and during the duration of the first mission — it won’t just be the engineers on the ground who see the imagery from the cameras located at various spots on the vehicle and ground. “Some cameras will record imagery onboard SLS and Orion and transmit later. But there will also be some live downlinked imagery from these cameras on launch day,” Melendrez said. “People watching at home will be able to see some of this imagery live on NASA TV.”

With the application of black-and-white photogrammetric targets on the solid rocket boosters, NASA’s new capability for exploring deep space is becoming clearer — and closer — all the time.

Source: NASA.Gov


An artist's concept showing the Space Launch System soaring through a layer of clouds following lift-off from NASA's Kennedy Space Center in Florida.

Thursday, July 13, 2017

Orion Update: Testing on NASA's Deep Space Capsule Continues...

NASA and military personnel practice techniques on how to assist astronauts egressing from an Orion capsule following splashdown after a deep space mission.

In Gulf of Mexico, NASA Evaluates How Crew Will Exit Orion (News Release)

When astronauts return to Earth from destinations beyond the Moon in NASA’s Orion spacecraft and splashdown in the Pacific Ocean, they’ll still need to safely get out of the spacecraft and back on dry land. Using the waters off the coast of Galveston, Texas, a NASA and Department of Defense team tested Orion exit procedures in a variety of scenarios July 10-14.

During the crew egress testing, a joint team from the Orion and Ground Systems Development and Operations programs, along with assistance from the U.S. Coast Guard, Navy and Air Force, evaluated how the crew will get out of the capsule with assistance and by themselves.

“Astronauts returning to Earth in Orion will have spent many days in space, and we want to make sure the last part of their journey goes smoothly no matter what kind of conditions they land in,” said Tom Walker, rescue and recovery lead for Orion at NASA’s Johnson Space Center in Houston. “Our testing in the Gulf of Mexico gives us an opportunity to practice and evaluate our plans and hardware for how to get crew out of Orion as safely and efficiently as possible.”

NASA is developing multiple methods to get the crew out of the spacecraft on the day they return home, which gives recovery personnel and mission controllers flexibility to account for the crew’s health, weather and the condition of the recovery personnel and equipment in the area in real-time.

Orion is designed to sustain a crew that has splashed down in the ocean for up to 24 hours. When the capsule and its crew return from deep space missions, during one recovery method, small boats of Navy personnel will arrive soon after landing. They will assist the crew as they exit through the side hatch of the capsule and onto rafts, and take them and the capsule back to an awaiting Naval ship.

Crew members must also be prepared to get out of the spacecraft’s if conditions aren’t as favorable. If the capsule were to land off course and recovery teams were not expected to arrive quickly, or water intrudes into the crew module before they arrive, astronauts must be prepared to get out of the spacecraft alone.

NASA also is evaluating how well crew members can get out of the spacecraft within three minutes and into a raft by themselves, without the assistance of recovery personnel. On human missions, Orion will be equipped with such a raft and a few additional emergency supplies such as water, tools and signaling mirrors, should the crew ever be in a situation where a team of recovery personnel is not immediately available to assist them.

Astronauts and engineering test subjects wore Orion Crew Survival System spacesuits, modified versions of NASA’s orange Advanced Crew Escape suits in development for use during Orion launch and entry, making the testing as true to mission scenarios as possible.

The testing builds upon the development and execution of recovery procedures practiced in the Neutral Buoyancy lab at NASA’s Johnson Space Center in Houston, a 6.2 million-gallon pool that is used for astronaut training and provided a calm environment for initial testing. Engineers expect to conduct additional future crew egress testing in open water.

Orion will send astronauts farther into space than humans have ever traveled before. While engineers are currently building the spacecraft for Orion’s first uncrewed flight atop the agency’s powerful Space Launch System rocket, NASA is working hard to develop and build the spacecraft elements, tools and techniques required to ensure a safe, successful journey when astronauts fly on the spacecraft beginning with Exploration Mission-2.

Source: NASA.Gov

Tuesday, June 27, 2017

Image of the Day: Orion's Airbags...

An animated GIF showing Orion's crew module uprighting system being tested at NASA's Johnson Space Center in Houston, Texas.

Orion Crew Module Uprighting System (News Release)

NASA’s Orion program is evaluating an updated design to the crew module uprighting system, the system of five airbags on top of the capsule that inflate upon splashdown. In high waves or wind over the ocean, the uprighting bags are responsible for turning Orion right side up if the capsule lands upside down or turns over when it returns to Earth. Engineers have retooled the design of the bags after they didn’t properly inflate during Exploration Flight Test-1.

The testing occurred at the Neutral Buoyancy Lab at NASA’s Johnson Space Center in Houston. The team is evaluating the bags during both normal inflation and failure scenarios to validate computer models. The testing in the calm waters of the pool is helping the team prepare for a late-summer complement of uprighting system tests in the Gulf of Mexico off the coast of Galveston, Texas.

Source: NASA.Gov

Friday, June 23, 2017

SLS Update: NASA Continues to Make Progress on Building Its New Mega-Rocket...

A test article of the Space Launch System's liquid hydrogen fuel tank is lowered into a cleaning cell at NASA's Michoud Assembly Facility in New Orleans, Louisiana.
NASA / MSFC Michoud image: Judy Guidry

SLS Core Stage Production Continues for Rocket’s First Flight (News Release)

Throughout NASA’s 43-acre rocket factory, the Michoud Assembly Facility in New Orleans, engineers are building all five parts of the Space Launch System’s core stage. For the first SLS flight for deep space exploration with NASA’s Orion spacecraft, major structural manufacturing is complete on three parts: the forward skirt, the intertank and the engine section. Test articles, which are structurally similar to flight hardware, and are used to qualify the core stage for flight, are in various stages of production and testing.

“One of the most challenging parts of building the world’s most powerful rocket has been making the largest rocket stage ever manufactured for the first time,” said Steve Doering, the SLS stages manager at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “The 212-foot-tall core stage is a new design made with innovative welding tools and techniques.”

To build the rocket’s fuel tanks, Boeing, the prime contractor for the SLS core stage, is joining some of the thickest parts ever built with self-reacting friction stir welding. NASA and Boeing engineers and materials scientists have scrutinized the weld confidence articles and developed new weld parameters for making the liquid oxygen and hydrogen tanks for the first SLS mission.

Resuming Welding in the Vertical Assembly Center

The Vertical Assembly Center, the large robotic tool where core stage parts are welded to form major structures, is expected to resume manufacturing next week. NASA halted production in early May after a liquid oxygen tank dome was inadvertently damaged during pre-weld preparations on the infeeder tool. This equipment is what positions the large dome for welding, or feeds it into the tank.

While the mishap investigation is still wrapping up, NASA and Boeing fully inspected the impacted dome and found while the hardware sustained minor damage, it is usable for its original purpose as part of a structural test article. The infeeder tool did sustain some damage during the incident and repairs to the tool are complete. Welding is resuming to finish construction of the liquid oxygen test article by adding the aft, or bottom, dome. Upon completion, the tank will undergo inspection for any flaws, final processing and proof testing.

In another area of the factory, domes and segments for the flight liquid oxygen tank await their turn to be joined on the VAC, and Boeing is now completing welding domes and barrels that will make up the liquid hydrogen tank for flight. Recently, major structural construction was completed on flight hardware for the one part of the core stage structure not welded. The intertank walls are too thick to be welded, so its eight panels are connected with 7,500 bolts. The walls have to be extremely strong because of the force it feels from the solid rocket boosters attached to it. To complete assembly on the inside of the core stage, the team is outfitting the intertank along with the flight forward skirt and the engine section structures, with avionics, wire harnesses, tubing, sensors, and propulsion systems.

Preparing Hardware for Testing

NASA and Boeing continue to prepare existing hardware for tests to help ensure success of the first SLS flight and crew safety on future missions. Before the tanks are hooked up to feed propellant to the four RS-25 engines or through a test stand propellant system, the tanks have to be cleaned to avoid any contamination. Though the liquid hydrogen structural test article is not fueled, the tank has recently been moved to the cleaning cell to certify the process ahead of the flight tank.

The first structural test article for SLS, an engine section which is similar to the flight article located at the bottom of the rocket’s core stage, is being installed on a test stand at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Hydraulic cylinders will push, pull, twist and bend the engine test article to validate the design and ensure it can withstand the pressure expected during launch and ascent.

“We are conducting the largest NASA launch vehicle test campaign since space shuttle development,” said John Honeycutt, the SLS program manager at Marshall. “The team is focused on delivering hardware to the pad for the first launch. We just completed integrated structural testing for the stage that will send Orion out beyond the Moon on the first flight. Now, we’ll be putting the core stage parts through the paces to gain an in-depth understanding of the rocket we are building for the first time as we expose parts of it to the extreme conditions of spaceflight.”

Source: NASA.Gov


Assembly is completed on the intertank structure that will fly aboard the Space Launch System during Exploration Mission-1 in 2019.
NASA / MSFC Michoud image: Judy Guidry

Saturday, June 3, 2017

A Previously-Flown Dragon Heads to the ISS...

A Falcon 9 rocket carrying a reused Dragon spacecraft launches from NASA's Kennedy Space Center in Florida on June 3, 2017.

New NASA Experiments, Research Headed to International Space Station (Press Release)

Major experiments that will look into the human body and out into the galaxy are on their way to the International Space Station aboard a SpaceX Dragon spacecraft following its 5:07 p.m. EDT launch aboard a Falcon 9 rocket.

The Dragon lifted off from Launch Complex 39A at NASA's Kennedy Space Center in Florida. About 6,000 pounds of research equipment, cargo and supplies are packed into the cargo craft that is now in Earth orbit and headed to the station.

NASA Television and the agency’s website will provide live coverage of the rendezvous and capture beginning at 8:30 a.m. Monday, June 5. NASA astronauts Jack Fischer and Peggy Whitson will use the space station’s robotic arm to capture SpaceX’s Dragon when it arrives at the station.

Research materials flying inside the Dragon's pressurized area include an experiment studying fruit flies to better understand the effects on the heart of prolonged exposure to microgravity. Because they’re small, age rapidly, and have a well-known genetic make-up, they are good models for heart function studies. This experiment could significantly advance understanding of how spaceflight affects the cardiovascular system and could aid in the development of countermeasures to help astronauts.

The Systemic Therapy of NELL-1 for osteoporosis investigation tests a new drug that can rebuild bone and block further bone loss, improving crew health. When people and animals spend extended periods of time in space, they experience bone density loss, or osteoporosis. In-flight countermeasures, such as exercise, prevent it from getting worse, but there isn’t a therapy on Earth or in space that can restore bone. The results from this ISS National Laboratory-sponsored investigation build on previous research also supported by the National Institutes for Health and could lead to new drugs for treating bone density loss in millions of people on Earth.

Three payloads inside Dragon’s unpressurized area will demonstrate new solar panel technologies, study the physics of neutron stars, and host an array of Earth-viewing instruments.

This mission is SpaceX’s eleventh cargo flight to the station under NASA’s Commercial Resupply Services contract. Dragon's cargo will support dozens of the more than 250 science and research investigations during the station’s Expeditions 52 and 53.

The Dragon spacecraft is scheduled to depart the space station in early July, returning with more than 3,400 pounds of science, hardware and crew supplies.

For more than 16 years, humans have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies, making research breakthroughs not possible on Earth that will enable long-duration human and robotic exploration into deep space. A global endeavor, more than 200 people from 18 countries have visited the unique microgravity laboratory that has hosted more than 1,900 research investigations from researchers in more than 95 countries.

Source: NASA.Gov


The Falcon 9's first stage booster stands quietly at Landing Zone 1 in Cape Canaveral after launching a reused Dragon capsule to the International Space Station...on June 3, 2017.

Wednesday, May 24, 2017

Photo of the Day: Another Successful Engine Test for the Space Launch System...

An RS-25 engine is test-fired inside the A-1 test stand at NASA's Stennis Space Center in Mississippi...on May 23, 2017.

NASA’s Space Launch System Engine Testing Heats Up (News Release - May 23)

NASA engineers successfully conducted the second in a series of RS-25 flight controller tests on May 23, 2017, stepping closer to deep-space exploration with the world’s most-powerful rocket. The test was set after a facility issue, subsequently resolved, forced rescheduling of a May 16 hot fire. The 500-second – more than eight full minutes – test on the A-1 Test Stand at NASA’s Stennis Space Center in Mississippi marked another milestone toward launch of NASA’s new Space Launch System (SLS) rocket on its inaugural flight, known as Exploration Mission-1 (EM-1).

The SLS rocket, powered by four RS-25 engines firing simultaneously, will provide 2 million pounds of thrust and work in conjunction with a pair of solid rocket boosters. The RS-25 engines for the initial flight are former space shuttle main engines, modified to perform at a higher level and with a new controller. The controller is the key modification to the engines. The component is often cited as the RS-25 “brain” that allows communication between the engine and the rocket. Prior to a flight, engine performance specifications, such as percentage of thrust needed, are programmed into the controller. The controller then communicates the specifications and ensures these are being met by monitoring and controlling such factors as propellant mixture ratio and thrust level.

Stennis performed an earlier series of tests to gather data for development of the new controller, which is a collaborative effort of NASA, RS-25 prime contractor Aerojet Rocketdyne of Sacramento, Calif. and subcontractor Honeywell of Clearwater, Fla. The first flight controller was tested in March at Stennis for installation on one of the four EM-1 engines. Pending data review from the May 23 test, the second flight controller will be installed on SLS for EM-1. A third flight controller is scheduled for testing in July at Stennis.

Tests are conducted by a team of NASA, Aerojet Rocketdyne and Syncom Space Services engineers and operators. Syncom Space Services is the prime contractor for Stennis facilities and operations.

Source: NASA.Gov