Tuesday, October 6, 2015

One Small Step for a Journey to the Red Planet...

An experimental heat shield designed for Mars entry vehicles is tested at NASA's Ames Research Center in Silicon Valley, California.

NASA Completes Successful Heat Shield Testing for Future Mars Exploration Vehicles (Press Release)

As NASA missions to Mars progress with science and complex human exploration missions, spacecraft will require larger heat shields to protect against the extreme heat of entering a planet's atmosphere and decelerating at a safe altitude in the thin Martian atmosphere.

Today's rockets have limited space to accommodate spacecraft and their heat shields. However, engineers at NASA’s Ames Research Center in Silicon Valley, California, have a solution to accommodate that limitation.

NASA’s Adaptive Deployable Entry and Placement Technology (ADEPT) is one solution. ADEPT is a mechanically-deployable heat shield concept using carbon fabric: a flexible heat shield that expands to “open” like an umbrella. Recently, Ames’ engineers successfully completed heating simulation testing of an ADEPT model under conditions akin to entering the Martian atmosphere.

The photograph above shows one of these tests. In it, a flow of extremely heated air is exiting the 21-inch diameter nozzle from the left, causing a bow shock to form in front of the ADEPT test article, which is attached to a water-cooled support arm. Surface temperatures on the test article reached 3,100 degrees Fahrenheit. The bluish-hue streaks, streaming away from the test article, are due to the decomposition of the resin-infused protective layers that prevent degradation of the stitched fabric joints.

Extensive instrumentation and imaging products from the test will be used to validate how materials respond to the testing conditions, and thermo-structural design codes. The testing approach demonstrated with this test will enable future, more extensive testing of the ADEPT configuration – toward possible future use of the system on missions bigger than anything NASA’s ever flown.

The ADEPT project is led by NASA’s Ames Research Center, with contributions from multiple other NASA centers. Testing, conducted by Ames’ Entry Systems and Technology Division, was funded by the Game Changing Development Program within NASA’s Space Technology Mission Directorate.

Source: NASA.Gov

Monday, October 5, 2015

ISS Update: Paving the Way for Crew Dragon, CST-100 and Other Spacecraft...

An International Docking Adapter that will soon launch to the International Space Station.
NASA / Charles Babir

International Space Station Partners Release Major Update to Docking Standard (Press Release)

The International Space Station Multilateral Coordination Board (MCB) has approved a major update to the station docking system standard. First released in 2010, the docking standard established a common station-to-spacecraft equipment interface to enable spacecraft of multiple types to dock to the space station.

"The latest additions to the docking standard further open the door for contributions by international agencies, as well as commercial enterprises for the International Space Station and exploration,” said William Gerstenmaier, MCB chair and NASA’s associate administrator for the Human Exploration and Operations Mission Directorate. “We have already seen benefits of this standard, creating the opportunity to develop additional standards for spacecraft design. The International Docking Adapters that will soon be installed on the space station are fully compatible with the docking standard, which means that any spacecraft can use the adapters in the future – from new commercial spacecraft to other international spacecraft yet to be designed.”

The update more than doubles the content in the guidelines, which enable in-orbit crew rescue by a range of spacecraft types and international collaborative exploration with future spacecraft -- from crewed to autonomous vehicles, and low-Earth orbit to deep-space missions. Limited to describing physical features and design parameters of a standard docking interface, the docking standards help ensure a common interface without dictating a particular design.

With this revision, the standard now includes a full range of rendezvous operations, with information on passive rendezvous targets used by spacecraft to locate the space station and lock on for approach. The addition of content related to rendezvous operations will provide the greatest possible access to information for active rendezvous sensor developers, while providing full compatibility for all current rendezvous sensor technologies.

The space station's senior level management board, the MCB includes senior representatives from NASA; the Russian Federal Space Agency; the Japanese Ministry of Education, Culture, Sports, Science and Technology, assisted by the Japan Aerospace Exploration Agency; ESA (European Space Agency); and the Canadian Space Agency. This group coordinates the orbiting laboratory's operations and activities among the partners.

The Multilateral Coordination Board released the document to allow non-partner agencies and commercial developers to review the new standard and provide feedback. Technical teams from the five space station partner agencies will continue to work on additional refinements and revisions to the standard.

Source: NASA.Gov

Thursday, October 1, 2015

SLS Update: Preparing the SRBs for Exploration Mission-1...

Engineers process the aft stiffener that will comprise one of the five-segment solid rocket boosters of the Space Launch the Orbital ATK facility in Utah.
Orbital ATK

Booster Hardware Readied for First Flight of NASA’s Space Launch System (Press Release)

Technicians at Orbital ATK in Promontory, Utah, offload the aft stiffener that will be used on one of the two, five-segment solid rocket boosters for the first flight of NASA’s new rocket, the Space Launch System (SLS). The boosters operate in parallel with the rocket’s main engines for the first two minutes of flight to provide the thrust needed for the launch vehicle to escape the gravitational pull of Earth. The aft stiffener is a component of the aft segment of the booster, which is located at the bottom of the booster during flight. The flight hardware is being processed at Orbital ATK’s facility. Later, the motor segments will be transported by rail to NASA's Kennedy Space Center in Florida, where they will join the forward and aft skirt assemblies. Once the boosters are assembled and checked out, they will be mated with the SLS core stage in the Vehicle Assembly Building at Kennedy.

Source: NASA.Gov


An infographic showing the various components that comprise the Space Launch System's five-segment solid rocket booster.

Wednesday, September 30, 2015

The HTV-5 Completes Its Mission at the ISS...

KOUNOTORI 5 is grappled by the space station's robotic arm prior to being unberthed from the orbital outpost on September 28, 2015 (U.S. Time).

Successful Re-entry of H-II Transfer Vehicle "KOUNOTORI 5" (HTV-5) - Press Release

The H-II Transfer Vehicle KOUNOTORI 5 (HTV-5) successfully re-entered the atmosphere after the third de-orbit maneuver at 5:08 AM on September 30, 2015 (Japanese Standard Time, JST).

The KOUNOTORI 5 has successfully accomplished its main objective of shipping cargo to the International Space Station (ISS), and completed its 42-day mission.

The estimated date/time for the re-entry and waterlanding are as follows (Japanese Standard Time):
Estimated re-entry*: September 30, 2015 / 5:33 AM
Estimated waterlanding: September 30, 2015 / 5:47 AM - 6:13 AM

* Altitude at 120 km

Source: Japan Aerospace Exploration Agency


KOUNOTORI 5 floats above the Earth after being unberthed from the International Space Station on September 28, 2015 (U.S. Time).

Thursday, September 24, 2015

Orion's Heat Shield: Lessons Learned from EFT-1...

A test version of the upgraded heat shield that will fly on the Orion spacecraft during Exploration Mission-1 in 2018.
Lockheed Martin

NASA Applies Insights for Manufacturing of Orion Spacecraft Heat Shield (Press Release)

When it comes to building a spacecraft fit for a journey to Mars, improvements happen brick by brick and block by block. Orion Program leaders have decided to begin building Orion’s heat shield in blocks rather than as a monolithic structure, a move that signals the insights gained as a result of testing the design in space.

Engineers building NASA’s Orion are making manufacturing improvements for the spacecraft ahead of its missions to deep space destinations near the moon and on the journey to Mars. Program leaders opted to begin building Orion’s heat shield in blocks rather than as a monolithic structure, a move that signals the insights gained as a result of testing the design in space.

The heat shield is one of the most critical elements of Orion and protects it and the future astronauts inside from searing temperatures experienced during reentry through Earth’s atmosphere when they return home. For Exploration Mission (EM)-1, the top layer of Orion’s heat shield that is primarily responsible for helping the crew module endure reentry heat will be composed of approximately 180 blocks that can be built in stages, easing the labor-intensive manufacturing process.

“The heat shield we put to the test during Orion’s flight test last December met every expectation we had and gave us a tremendous amount of data on its thermal and mechanical performance,” said Mark Kirasich, Acting Orion Program Manager. “But the process of building the heat shield as a single piece for that flight also gave us insight into how we could improve the way we build this essential element of the spacecraft.”

Orion’s flight test, known as Exploration Flight Test-1 or EFT-1, provided an opportunity to develop confidence in the overall system and provide insight that can't be gained from models in the laboratory. The heat shield experienced temperatures of about 4,000 degrees Fahrenheit and speeds approximately 80 percent of what it will endure when it comes back from missions near the moon, all while keeping the temperature inside the crew module in the mid-70s. Post-flight examinations of the heat shield confirmed it performed well within expected tolerances.

The heat shield was composed of a titanium skeleton and carbon fiber skin that gave the crew module its circular shape on the bottom and provided structural support, on top of which a fiberglass-phenolic honeycomb structure was placed. The honeycomb structure had 320,000 tiny cells that were individually filled by hand with an ablative material called Avcoat designed to wear away as Orion returned to Earth through the atmosphere. During the labor-intensive process, each individual cell was filled by hand as part of a serial process, cured in a large oven, X-rayed and then robotically machined to meet precise thickness requirements.

However, during the manufacture of the heat shield for Orion’s flight test, engineers determined that the strength of the Avcoat/honeycomb structure was below expectations. While analysis showed, and the flight proved, that the heat shield would work for the test, the EM-1 Orion will experience colder temperatures in space and hotter temperatures upon reentry, requiring a stronger heat shield.

Through lessons and data obtained from building and flying the heat shield, the team was able to make a design update for the Avcoat block design that will meet the EM-1 strength requirements. It is also expected to provide a cost savings and shorten the current heat shield manufacturing timeline by about two months. Engineers have now folded the update into the design review that will lock down the design for the next version.

Across the country, elements of the Orion spacecraft for EM-1 are coming together. This month welding began on the next Orion destined for space at NASA’s Michoud Assembly Facility in New Orleans. In October, NASA will see the arrival of a test version of Orion’s ESA (European Space Agency)-provided service module for testing and analysis at the agency’s Plum Brook Station near Sandusky, Ohio, and is scheduled to complete its critical design review, a months-long review that demonstrates Orion is ready to proceed to full-scale fabrication, assembly, integration and testing.

Source: NASA.Gov


Orion's heat shield is installed onto the spacecraft at NASA's Kennedy Space Center in Florida...during Exploration Flight Test-1 launch preparations last year.

Wednesday, September 23, 2015

SLS Update: Making Progress Towards Next Year's QM-2 Test...

Engineers inspect the avionics subsystem and hardware for the QM (Qualification Motor)-2 solid rocket booster (SRB) at an Orbital ATK test facility in Utah...prior to the successful off-motor hot-fire test on September 22, 2015.
Orbital ATK

Twice as Nice: NASA, Orbital ATK Prepare for Second SLS Booster Ground Test (Press Release)

NASA and Orbital ATK of Promontory, Utah, are getting fired up for a second qualification ground test for the largest, most powerful boosters ever built for the agency’s new rocket, the Space Launch System (SLS).

On Sept. 22, engineers successfully tested the booster thrust vector control and avionics systems during an off-motor hot-fire test at ATK. The hot-fire test simulated the test cycle that will be used in the second qualification test, which will closely resemble flight conditions.

The thrust vector control system steers the rocket nozzle based on commands passed through the booster avionics system -- made up of hardware, software and operating systems that will communicate with the SLS avionics system and ground operations. The avionics also will control booster operations, like motor firing and separation motor ignition.

When completed, two five-segment boosters and four RS-25 main engines will power the SLS on deep space missions, including to an asteroid and ultimately to Mars. The solid rocket boosters -- measuring 177 feet long and producing 3.6 million pounds of thrust -- operate in parallel with the main engines for the first two minutes of flight. The boosters provide more than 75 percent of the thrust needed for the launch vehicle to escape the gravitational pull of the Earth.

The second qualification test, planned for spring 2016, will test the booster’s performance at a cold motor conditioning target of 40 degrees and also demonstrate that it meets applicable ballistic requirements.

“We are making significant progress in preparation for the second qualification test,” says Bruce Tiller, deputy manager of the SLS Boosters Office at NASA's Marshall Space Flight Center in Huntsville, Alabama. Marshall manages the SLS Program for the agency. “The completion of these qualification tests is crucial in getting the boosters certified for the first two flights of SLS and staying the course for the journey to Mars.”

Four of the five segments of the booster also have been cast at Orbital ATK’s facilities. The final segment is scheduled to be cast in late September. Two of the cast segments have undergone rigorous inspections, with the other two following suit in the next two months.

“The rear and forward segments have successfully completed all non-destructive evaluation with no defect indications and are currently in final assembly,” says Fred Brasfield, Orbital ATK vice president for NASA programs. “The next major event for the rear segment will be installation of the nozzle, which is expected to happen in November.”

“Finding no defects in the segment insulation we’ve inspected so far is a huge accomplishment for our teams, and something that hasn’t been done on past NASA programs,” says Tiller. “That’s a testament to the work we’ve put in on refining our manufacturing processes and materials.”

The first booster qualification test was successfully completed in March. For that test, the booster was heated to 90 degrees Fahrenheit to demonstrate how it performs in high-temperature conditions. Similar to the first test, some of the objectives of the second test include data gathering on vital motor upgrades, such as the new insulation and booster case liner and the redesigned nozzle, which increases the robustness of the design. The nozzle -- the most complex part of the booster -- controls expansion of chamber pressures and includes the thrust vector control system, which guides and controls the rocket.

The first flight test of the SLS will feature a Block I configuration for a 70-metric-ton (77-ton) lift capacity and carry an uncrewed Orion spacecraft beyond low-Earth orbit to test the performance of the integrated system. As the SLS evolves, it will provide an unprecedented lift capability of 130 metric tons (143 tons) to enable missions even farther into our solar system.

Source: NASA.Gov


Orbital ATK engineers install insulation to the rear segment of the SRB for the QM-2 ground test...set to take place in Utah early next year.
Orbital ATK

Tuesday, September 22, 2015

EM-1 Update: Europe Makes Progress in Developing Orion's Service Module...

A test version of the fuel tank that will be installed inside the Service Module that Europe is building for NASA's Orion spacecraft.
Airbus Defence and Space

Airbus Defence and Space Builds First Hardware for Orion Space Vehicle’s Service Module (Press Release)

Airbus Defence and Space, prime contractor for NASA’s Orion space vehicle’s European Service Module (ESM), has completed four large titanium tanks for the module that will be delivered for initial testing.

The tanks are the first hardware to be supplied for the Orion space vehicle. Each tank is 2.67 metres high with a diameter of 1.15 metres. The tanks weight approximately 100 kilograms when empty and have a volume of 2,100 litres, giving a total payload capacity of almost nine tonnes of fuel [monomethylhydrazine (MMH) and mixed oxides of nitrogen (MON)]. Most of the ESM’s total mass of just over 13 tonnes will consist of fuel.

The tanks will be first transported to Italy, where the structural test model will be assembled before being tested in the United States. The primary goal of these initial tests is to verify whether the structural components can withstand the enormous loads, especially during take-off. The next step is to build the engineering model that will be assembled and tested at Airbus Defence and Space in Bremen. This model will be used to test the inner workings of the tanks, which ensure a continuous, bubble-free flow of propellant to the motors in zero gravity. The actual flight tanks for the ESM – which will be used for the first time when the uncrewed Exploration Mission 1 launches in 2018 – will be built by Airbus Defence and Space in Bremen by mid-2016.

The ESM will provide propulsion, power and thermal control to the Orion space vehicle, and will also supply crew members with water and oxygen during missions to the Moon, asteroids and later, eventually, to Mars.

Source: Airbus Group


An artist's concept of NASA's Orion spacecraft with a European Service Module attached to it.

Wednesday, September 16, 2015

Orion Update: EM-2 May Launch No Later Than Early 2023...

At NASA's Johnson Space Center in Houston, Texas, spacesuit engineers demonstrate how four crew members would be arranged for launch inside the Orion spacecraft, using a mockup of the capsule.

NASA Completes Key Milestone for Orion Spacecraft in Support of Journey to Mars (Press Release)

NASA’s mission to send astronauts to deep space destinations where no other human has traveled has taken another important step forward with the completion of a critical milestone for the Orion spacecraft currently in production.

Agency officials have completed a rigorous technical and programmatic review, confirming continued support of the program and establishing NASA’s commitment to the program’s technical, cost, and schedule baseline. This is the first time NASA has reached this level of progress for a spacecraft designed to take humans into deep space beyond the moon, including to an asteroid placed in lunar orbit and on the journey to Mars.

“Our work to send humans out into the solar system is progressing,” said NASA Administrator Charles Bolden. “Orion is a key piece of the flexible architecture that will enable humanity to set foot on the Red Planet, and we are committed to building the spacecraft and other elements necessary to make this a reality.”

A successful test of an uncrewed Orion capsule, Exploration Flight Test-1 (EFT-1), flew in December 2014, providing important data that allowed engineers to identify risks associated with deep space flight and re-entry and use that knowledge to improve the design of Orion for its next test flights, Exploration Missions 1 and 2 (EM-1 and EM-2).

Performance data has helped to improve manufacturing processes, as well. Engineers have already incorporated many of these improvements into elements of the EM-1 design, including the crew compartment or pressure vessel, which now is in fabrication and assembly at companies across the country. The vessel is comprised of seven panels or sections, and the first two of these were welded together last week. When complete, this capsule will launch on NASA’s Space Launch System (SLS) rocket on the first fully integrated flight test, EM-1.

Astronauts will fly on Orion for the first time on EM-2. That mission will build on the results of the EM-1 flight with additional requirements that the Orion capsule includes fully integrated environmental control and life support systems; controls; and communications designed specifically for the human operation; and advanced launch and re-entry spacesuits for the crew. The recent review, culminating in what is known within NASA as Key Decision Point C (KDP-C), includes all of these technological advancements, and approval represents agency support for this work and the Orion program plan.

The decision commits NASA to a development cost baseline of $6.77 billion from October 2015 through the first crewed mission (EM-2) and a commitment to be ready for a launch with astronauts no later than April 2023. The commitment is consistent with funding levels in the president’s budget request. Conservative cost and schedule commitments outlined in the KDP-C align the Orion Program with program management best practices that account for potential technical risks and budgetary uncertainty beyond the program's control.

“As we take these steps to develop the capabilities we need to send astronauts deep into space, we’re also aligning how we manage our human exploration systems development programs to ensure we are prepared for unforeseen future hurdles,” said Robert Lightfoot, NASA associate administrator. “We’re committing to this funding and readiness level to stay on the journey we’ve outlined to get to Mars.”

Orion engineers now are executing a rigorous review of the spacecraft’s engineering design and technical progress of the vehicle systems and subsystems. This critical design review (CDR) will demonstrate Orion is ready to proceed to full-scale fabrication, assembly, integration and testing. NASA’s SLS Program recently completed this milestone, and its Ground Systems Development and Operations (GSDO) Program will begin its review this fall.

“The Orion Program has done incredible work, progressing every day and meeting milestones to prepare for our next missions,” said William Gerstenmaier, the agency’s associate administrator for Human Exploration and Operations at NASA Headquarters. “The team will keep working toward an earlier readiness date for a first crewed flight, but will be ready no later than April 2023, and we will keep the spacecraft, rocket and ground systems moving at their own best possible paces.”

In the coming months, Orion will complete its CDR; see the arrival of a test version for the European Space Agency-provided service module at NASA’s Plum Brook Station near Sandusky, Ohio; perform a series of parachute tests; and complete the welding of the crew pressure vessel. Although Orion’s readiness date for EM-1 was not formally part of the KDP-C milestone commitment, engineers continue to work toward a commitment for SLS and GSDO to be ready for the uncrewed mission in fall 2018, and NASA will set an integrated launch date after GSDO’s critical design review is completed.

Source: NASA.Gov


A computer-generated image depicting the Orion spacecraft as its flies past the Moon several days after the launch of Exploration Mission November of 2018.

Thursday, September 10, 2015

Photo of the Day: A Celestial Display Between Our Star and Mankind's Largest Artificial Satellite...

A composite image of the International Space Station crossing in front of our Sun on September 6, 2015.
NASA / Bill Ingalls

International Space Station Transits the Sun (Press Release - September 8)

This composite image made from five frames shows the International Space Station, with a crew of nine onboard, in silhouette as it transits the sun at roughly 5 miles per second, Sunday, Sept. 6, 2015, Shenandoah National Park, Front Royal, VA. Onboard are; NASA astronauts Scott Kelly and Kjell Lindgren: Russian Cosmonauts Gennady Padalka, Mikhail Kornienko, Oleg Kononenko, Sergey Volkov, Japanese astronaut Kimiya Yui, Danish Astronaut Andreas Mogensen, and Kazakhstan Cosmonaut Aidyn Aimbetov.

Source: NASA.Gov

Wednesday, September 9, 2015

SLS Update: Paving the Way for the Mega-Rocket's Assembly...

A test version of the Space Launch System's Launch Vehicle Stage Adapter (LVSA) is assembled at NASA's Marshall Space Flight Center in Huntsville, Alabama.
NASA / MSFC / Emmett Given

Construction Begins on Test Version of Important Connection for SLS (Press Release)

Strong connection points between the stages of NASA’s Space Launch System (SLS) -- the agency’s advanced launch vehicle for exploration beyond Earth’s orbit into deep space -- are essential to ensure that the rocket will withstand the loads it may experience during flight. The Launch Vehicle Stage Adapter, or LVSA, plays an important role in connecting two major sections of the rocket -- the core stage and the upper stage.

The upper stage, known as the Interim Cryogenic Propulsion Stage, gives the Orion spacecraft the big, in-space push needed to fly beyond the moon before the spacecraft returns to Earth for the first flight test of SLS. The Orion spacecraft is connected to the upper stage with the Orion Stage Adapter.

Welding of the major panels of a test version of the LVSA began in August at NASA's Marshall Space Flight Center in Huntsville, Alabama, where the agency manages the SLS program.

Marshall engineers, in close partnership with prime contractor Teledyne Brown Engineering of Huntsville, are applying friction-stir-welding capabilities and equipment. The friction-stir-welding process joins large pieces of the LVSA by stirring their edges together without completely melting the metal, resulting in a stronger weld than in standard welding practices. The Marshall weld team also developed an innovative modular tooling concept, which can make different size adapters using the same machinery – reducing costs and build time.

“We are starting to see the test version of the LVSA take shape,” said Brent Gaddes, adapter manager for SLS. “This is a unique structure, which presents some challenges due to its large size and conical shape. However, we have a very capable team, both with Marshall and Teledyne Brown, and are building on our experience with the stage adapter that was used on Orion’s first test flight in 2014.”

Engineers have already completed structural test articles of the Orion stage adapter, core stage simulator and Orion spacecraft simulator. A test article for the interim cryogenic propulsion stage is currently in production at United Launch Alliance in Decatur, Alabama. When the test versions of all the parts are completed, engineers will stack them and move the 56-foot tall structure to a Marshall test stand for testing to verify the integrity of the hardware and ensure it can withstand the loads it may experience during flight.

The first flight test of the SLS will feature a Block I configuration for a 70-metric-ton (77-ton) lift capacity and carry an uncrewed Orion spacecraft beyond low-Earth orbit to test the performance of the integrated system. As the SLS evolves, it will provide an unprecedented lift capability of 130 metric tons (143 tons) to enable missions even farther into our solar system.

Source: NASA.Gov


An infographic showing the LVSA's location on NASA's Space Launch System.