Tuesday, July 2, 2019

The Last Major Flight Test for Orion Is Achieved Before It Flies on the Artemis 1 Mission to the Moon...

A modified Peacekeeper missile carrying an Orion mass simulator and its launch abort system lifts off on the Ascent Abort-2 test from Cape Canaveral Air Force Station in Florida...on July 2, 2019.
NASA / Tony Gray and Kevin O’Connell

Successful Orion Test Brings NASA Closer to Moon, Mars Missions (Press Release)

NASA successfully demonstrated Tuesday the Orion spacecraft’s launch abort system can outrun a speeding rocket and pull astronauts to safety during an emergency during launch. The test is another milestone in the agency’s preparation for Artemis missions to the Moon that will lead to astronaut missions to Mars.

During the approximately three-minute test, called Ascent Abort-2, a test version of the Orion crew module launched at 7 a.m. EDT from Space Launch Complex 46 at Cape Canaveral Air Force Station in Florida on a modified Peacekeeper missile procured through the U.S. Air Force and built by Northrop Grumman.

The Orion test spacecraft traveled to an altitude of about six miles, at which point it experienced high-stress aerodynamic conditions expected during ascent. The abort sequence triggered and, within milliseconds, the abort motor fired to pull the crew module away from the rocket. Its attitude control motor flipped the capsule end-over-end to properly orient it, and then the jettison motor fired, releasing the crew module for splashdown in the Atlantic Ocean.

A team is collecting the 12 data recorders that were ejected during the test capsule’s descent. Analysis of the information will provide insight into the abort system’s performance.

“We're building the most powerful rocket in the world to send astronauts to the Moon in the Orion spacecraft for Artemis missions,” said Bill Hill, deputy associate administrator for Exploration Systems Development at NASA Headquarters in Washington. “With this exploration system designed to safely carry humans farther into space than ever before, we'll also have an equally powerful launch abort system that will pull the crew away if there is a problem with the rocket during the early portion of ascent.”

The tower-like abort structure consists of two parts: the fairing assembly, which is a shell composed of a lightweight composite material that protects the capsule from the heat, air flow and acoustics of the launch, ascent, and abort environments; and the launch abort tower, which includes the abort motor, attitude control motor, and jettison motor. The system is built specifically for deep space missions and to ride on NASA’s powerful Space Launch System (SLS) rocket.

“Launching into space is one of the most difficult and dangerous parts of going to the Moon,” said Mark Kirasich, Orion program manager at Johnson Space Center in Houston. “This test mimicked some of the most challenging conditions Orion will ever face should an emergency develop during the ascent phase of flight. Today, the team demonstrated our abort capabilities under these demanding conditions and put us one huge step closer to the first Artemis flight carrying people to the Moon.”

NASA was able to accelerate the test schedule and lower costs by simplifying the test spacecraft and eliminating parachutes and related systems. NASA already qualified the parachute system for crewed flights through an extensive series of 17 developmental tests and eight qualification tests completed at the end of 2018.

Engineers are making progress building and testing the Orion spacecraft for Artemis 1, the first uncrewed mission with the SLS rocket – an integrated system traveling thousands of miles beyond the Moon – and for Artemis 2, the first mission with astronauts.

At NASA’s Kennedy Space Center in Florida, technicians are preparing to attach the Orion crew and service modules before testing at the agency’s Plum Brook Station in Sandusky, Ohio, later this year. The crew module for Artemis 2 is being outfitted with thousands of elements – from bolts and strain gauges to parachutes and propulsion lines.

The agency recently reached major milestones for the SLS rocket, assembling four of the five parts that make up the massive core stage that will launch Artemis 1 and delivering the four engines that will be integrated into the core stage, along with the engine section, later this summer. When completed, the entire core stage will be the largest rocket stage NASA has built since manufacturing the Saturn V stages for NASA’s Apollo lunar missions in the 1960s.

Orion is part of NASA’s backbone for deep space exploration, along with the SLS and Gateway, that will land the first woman and next man on the Moon by 2024. Through the Artemis program, the next American Moon walkers will depart Earth aboard Orion and begin a new era of exploration.

****

The launch abort system carrying an Orion mass simulator rockets away from the modified Peacekeeper missile during the Ascent Abort-2 test from Cape Canaveral Air Force Station in Florida...on July 2, 2019.
NASA / Kim Shiflett


Saturday, June 29, 2019

SLS Update #2: NASA Moves Forward with Plans to Build a Second Mobile Launcher for the Space Launch System...

Mobile Launcher 1 arrives atop Launch Complex 39B at NASA's Kennedy Space Center in Florida on June 28, 2019...for a three-month-long series of tests.
NASA / Kim Shiflett

NASA Awards Contract for Second Mobile Launcher at Kennedy Space Center (Press Release - June 25)

NASA has selected Bechtel National, Inc., of Reston, Virginia, to design and build a second mobile launcher, known as Mobile Launcher 2 or ML2, for Exploration Ground Systems at the agency’s Kennedy Space Center in Florida.

The cost-plus-award-fee end item contract has a total value of approximately $383 million. Bechtel National will complete the design, build, test, and commissioning of the mobile launcher within a 44-month period beginning July 1.

ML2 is the ground structure that will be used to assemble, process, and launch NASA’s Space Launch System (SLS) Block 1B rocket and Orion spacecraft from Launch Pad 39B at Kennedy for missions under NASA’s Moon to Mars exploration approach.

It will consist of a base structure, the platform for SLS, and a tower equipped with a number of connection lines called umbilicals, as well as launch accessories that will provide SLS and Orion with power, communications, coolant, fuel, and stabilization prior to launch.

Source: NASA.Gov

Friday, June 28, 2019

SLS Update: Four New Deliveries Arrive in New Orleans for the Artemis 1 Core Stage Booster...

At NASA's Michoud Assembly Facility in New Orleans, Louisiana, engineers tend to the four RS-25 engines that will fly on the Space Launch System during the Artemis 1 mission.
Aerojet Rocketdyne

Artemis 1 Engines Delivered to NASA’s Michoud Assembly Facility (News Release)

Crews delivered the last of four RS-25 engines for Artemis 1, the first flight of NASA’s Space Launch System (SLS) rocket and the Orion spacecraft, from NASA’s Stennis Space Center near Bay St. Louis, Mississippi, to NASA’s Michoud Assembly Facility in New Orleans Thursday, June 27, 2019. The engines, located at the bottom of the rocket’s massive core stage, are fueled by liquid hydrogen and liquid oxygen.

When Artemis 1 launches to the Moon, the four RS-25 engines will fire nonstop for 8.5 minutes, providing the rocket 2 million of its 8.8 million pounds of maximum thrust at liftoff. Technicians from NASA and Aerojet Rocketdyne, the lead contractor for the engines, at Michoud will now prepare the four engines for installation to the rest of the core stage later this summer.

NASA is working to land the first woman and next man on the Moon by 2024. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon. SLS is the only rocket that can send Orion, astronauts and supplies to the Moon on a single mission.

Source: NASA.Gov

****

An artist's concept of the Space Launch System, with its four RS-25 engines firing underneath the core stage, lifting off from NASA's Kennedy Space Center in Florida.
NASA

Friday, June 7, 2019

ISS Update: A New Era Will Soon Begin for the Orbital Outpost...

NASA plans to commercialize the International Space Station as the agency puts its main focus on landing the first woman and next man on the Moon by 2024.
NASA

NASA Opens International Space Station to New Commercial Opportunities, Private Astronauts (Press Release)

NASA is opening the International Space Station for commercial business so U.S. industry innovation and ingenuity can accelerate a thriving commercial economy in low-Earth orbit.

This move comes as NASA focuses full speed ahead on its goal of landing the first woman and next man on the Moon by 2024, where American companies also will play an essential role in establishing a sustainable presence.

NASA officials, including the agency’s Chief Financial Officer Jeff DeWit, will discuss details of the five-part near-term plan in a news conference at 10 a.m. EDT today. The news conference will air live on NASA Television and the agency’s website.

NASA will continue research and testing in low-Earth orbit to inform its lunar exploration plans, while also working with the private sector to test technologies, train astronauts and strengthen the burgeoning space economy. Providing expanded opportunities at the International Space Station to manufacture, market and promote commercial products and services will help catalyze and expand space exploration markets for many businesses.

The agency’s ultimate goal in low-Earth orbit is to partner with industry to achieve a strong ecosystem in which NASA is one of many customers purchasing services and capabilities at lower cost.

NASA’s plan addresses both the supply-side and demand-side for a new economy, enabling use of government resources for commercial activities, creating the opportunity for private astronaut missions to the space station, enabling commercial destinations in low-Earth orbit, identifying and pursuing activities that foster new and emerging markets, and quantifying NASA’s long-term demand for activities in low-Earth orbit.

Commercial Activities Aboard the Space Station

More than 50 companies already are conducting commercial research and development on the space station via the International Space Station U.S. National Laboratory, and their results are yielding great promise. In addition, NASA has worked with 11 different companies to install 14 commercial facilities on the station that support research and development projects for NASA and the ISS National Lab.

This effort is intended to broaden the scope of commercial activity on the space station beyond the ISS National Lab mandate, which is limited to research and development. A new NASA directive will enable commercial manufacturing and production and allow both NASA and private astronauts to conduct new commercial activities aboard the orbiting laboratory. The directive also sets prices for industry use of U.S. government resources on the space station for commercial and marketing activities.

Pricing released Friday is specific to commercial and marketing activities enabled by the new directive, reflects a representative cost to NASA, and is designed to encourage the emergence of new markets. As NASA learns how these new markets respond, the agency will reassess the pricing and amount of available resources approximately every six months and make adjustments as necessary.

To qualify, commercial and marketing activities must either:

- require the unique microgravity environment to enable manufacturing, production or development of a commercial application;

- have a connection to NASA’s mission; or

- support the development of a sustainable low-Earth orbit economy.

NASA’s directive enabling commercial and marketing activities aboard the space station addresses manufacturing, production, transportation, and marketing of commercial resources and goods, including products intended for commercial sale on Earth. NASA astronauts will be able to conduct coordinated, scheduled and reimbursable commercial and marketing activities consistent with government ethics requirements aboard the station.

To ensure a competitive market, NASA initially is making available five percent of the agency’s annual allocation of crew resources and cargo capability, including 90 hours of crew time and 175 kg of cargo launch capability, but will limit the amount provided to any one company.

Private Astronaut Missions

NASA also is enabling private astronaut missions of up to 30 days on the International Space Station to perform duties that fall into the approved commercial and marketing activities outlined in the directive released Friday, with the first mission as early as 2020. A new NASA Research Announcement focus area issued today outlines the path for those future private astronaut missions.

If supported by the market, the agency can accommodate up to two short-duration private astronaut missions per year to the International Space Station. These missions will be privately funded, dedicated commercial spaceflights. Private astronaut missions will use a U.S. spacecraft developed under NASA’s Commercial Crew Program.

The commercial entity developing the mission will determine crew composition for each mission and ensure private astronauts meet NASA’s medical standards and the training and certification procedures for International Space Station crew members. Market studies identified private astronaut missions to low-Earth orbit as a key element to demonstrate demand and reduce risk for future commercial destinations in low-Earth orbit.

Commercial Destinations in Low-Earth Orbit

In the long-term, NASA’s goal is to become one of many customers purchasing services from independent, commercial and free-flying habitable destinations in low-Earth orbit. A robust low-Earth orbit economy will need multiple commercial destinations, and NASA is partnering with industry to pursue dual paths to that objective that either go through the space station or directly to a free-flying destination.

As a first step, NASA is making one space station port and utilities available for industry to attach a commercial module to support commercial activities, and today is releasing a synopsis as Appendix I in NASA’s Next Space Technologies for Exploration Partnerships (NextSTEP) 2 Broad Agency Announcement (BAA). NASA expects to release the solicitation June 14, with awards made by the end of the fiscal year. The forward port of the station’s Harmony module will be available to industry for a finite period of time.

NASA will follow up with a synopsis for NextSTEP 2 Appendix K in July to partner with industry in the development of future free-flying commercial stations in low-Earth orbit.

Stimulate Sustainable Demand

NASA continues to seek and pursue opportunities to stimulate sustainable commercial demand in low-Earth orbit and, to that end, has added two new focus areas to the NASA Research Announcement soliciting proposals for commercial concepts. these focus areas include in-space manufacturing, regenerative medicine, bioengineering, and other fields that may lead to a scalable, financially self-sustaining demand for low-Earth orbit capabilities.

In addition, NASA is seeking targeted studies to better understand real and perceived barriers of potential new market entrants and to address broad ideas which could help stimulate demand. Successful proposals will define the path to broadly foster market growth, provide data-driven rationale to support the defined path, and lead to recommendations on which NASA, industry or other organizations could act. More details are available in the synopsis for NextSTEP 2 BAA Appendix J. NASA expects to release the solicitation for Appendix J on June 14 with awards made by the end of the fiscal year.

NASA also is working to increase the research and development community’s understanding of the potential value of microgravity research and the path to conducting research in low-Earth orbit by coordinating across the microgravity community to lower barriers to entry and refinement of research via drop towers, parabolic, and suborbital flights.

Quantify NASA’s Long-term Demand

NASA is providing a forecast of its minimum long-term, low-Earth orbit requirements, representing the type and amount of services that NASA intends to purchase when those services become commercially available. The goal is to reduce uncertainty for commercial destination providers about NASA as a customer, and to help them make decisions about which NASA requirements they are interested in fulfilling.

NASA also is providing details and estimated quantities for NASA crew accommodation, human research, biological and physical science research, technology demonstrations, and hosted science instruments. In addition, NASA intends to continue purchasing services for a national laboratory capability in low-Earth orbit. For example, NASA’s strategy research in the areas of space biology, physical sciences, and fundamental physics is driven by recommendations from the National Academy of Sciences (NAS). Fundamental research and applied exploration research are not mutually exclusive, and advances in one area often enable advancements in the other. NASA’s Space Life and Physical Sciences Research Applications division has identified the highest research priorities for long-term use of low-Earth orbit: in life sciences, the priorities are studies of plants, model organisms, and of the microbiome of the built environment; and in physical sciences, the priorities are studies into combustion and phase change-associated energy transfer.

To improve the agency’s five-part plan and its effectiveness, NASA is seeking feedback from industry and others through a request for information, with responses due by July 3.

For more than 18 years, humans have lived and worked aboard the International Space Station, conducting thousands of experiments in areas such as human research, biology, and physical science, as well as advanced technology development. Many of these experiments, conducted via the ISS National Lab, have been research and development with commercial objectives. New opportunities are needed to move beyond research and development, and the station will play an essential role in enabling those opportunities for new commercial markets needed to build a sustainable ecosystem in low-Earth orbit.

****

Monday, June 3, 2019

Artemis 1 Update: More Info on the Space Launch System's First Core Stage Booster...

The Space Launch System's core stage booster is 80% complete inside NASA's Michoud Assembly Facility in New Orleans, Louisiana.
NASA / Eric Bordelon

NASA Reaches New Milestone on Complex, Large Rocket (News Release)

NASA achieved a significant milestone in manufacturing the first large, complex core stage that will help power the Space Launch System (SLS) rocket on upcoming missions to the Moon. NASA and lead contractor Boeing have assembled four-fifths of the massive core stage needed to launch SLS and the Orion spacecraft on their first mission to the Moon: Artemis 1.

The Artemis program will send the first woman and the next man to the Moon by 2024 and develop a sustainable human presence on the Moon by 2028. The program takes its name from the twin sister of Apollo and goddess of the Moon in Greek mythology.

“This milestone brings the Space Launch System closer to launching the first Artemis mission,” said John Honeycutt, SLS program manager. “The SLS rocket team is laser focused on building the rocket not only for the first flight but also rockets for the second and third Artemis missions that will send astronauts to the Moon.”

At approximately 190 feet, about the size of 12 cars parked end-to-end, the stage in its current configuration is the largest rocket stage the agency has built since the Saturn V stages that first sent humans to the Moon nearly 50 years ago. The completed core stage, which includes two propellant tanks as well as four RS-25 engines, will tower at 212 feet. It, along with the twin five-segment solid rocket boosters, will produce the majority of the power to send the SLS and Orion to space.

“Building and assembling this massive integrated propulsion and avionics stage for the world’s most powerful rocket, the only launch vehicle that can return astronauts to the Moon, is an engineering feat,” said Julie Bassler, SLS stages manager. “To manufacture the Space Launch System, we are working with more than 1,000 companies across the country. It’s truly America’s rocket.”

This significant program milestone comes after crews completed the second of three major activities to join the liquid hydrogen fuel tank to the upper part of the core stage. The upper part is made up of three previously connected large structures: the forward skirt that houses the rocket’s flight computers, the liquid oxygen propellant tank, and the intertank that holds more avionics and attaches to the rocket’s powerful boosters. Technicians horizontally connected the liquid hydrogen tank to the intertank using 360 bolts. NASA and Boeing, the SLS prime contractor, will now complete outfitting the engine section before integrating it, along with the four RS-25 engines, to the rest of the stage, completing the immense core stage in its entirety.

In response to President Trump’s charge to return Americans to the Moon by 2024, engineers and technicians revised the core stage assembly plan to mate the individual structures horizontally rather than vertically. These milestones — combined with new production tools and the team’s responsiveness — keep core stage production on track for completion by the end of the year.

“NASA is constantly looking for ways to get work done more efficiently so that we can get astronauts landing on the Moon by 2024,” said Ben Birkenstock, the SLS stages vehicle assembly lead. “The NASA and Boeing team is learning while building this first core stage. The decision to integrate the core stage structures horizontally demonstrates our efforts to continuously improve our operations.”

The SLS team continues to make progress on other elements for the rocket’s first three missions. In April, the last of 16 RS-25 engines from the space shuttle program passed inspection, capping a 51-month acceptance test series at NASA’s Stennis Space Center near Bay St. Louis, Mississippi and clearing all engines suitable for flight. The manufacture and checkout of all 10 motor segments for the twin boosters on the first Artemis flight were completed in January. NASA and Northrop Grumman technicians in Promontory, Utah, applied insulation to all the booster segments for Artemis 2 in the spring. The solid rocket boosters and four RS-25 engines produce a combined thrust of 8.8 million pounds during launch and flight.

Other parts of the rocket for the first flight, like the launch vehicle stage adapter and the solid rocket boosters, will soon be delivered to NASA’s Kennedy Space Center in Florida. The interim cryogenic propulsion stage that will give NASA’s Orion spacecraft the push needed to get to the Moon and the adapter that will connect that stage to the spacecraft have already been delivered to Kennedy.

NASA is working to land the first woman and next man on the Moon by 2024. SLS and Orion, along with the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts and supplies to the Moon on a single mission.

Source: NASA.Gov

****

The four RS-25 engines that will fly with the first Space Launch System rocket on the Artemis 1 mission are placed in storage at NASA's Stennis Space Center in Mississippi.
NASA

The four RS-25 engines that will fly with the first Space Launch System rocket on the Artemis 1 mission are placed in storage at NASA's Stennis Space Center in Mississippi.
Northrop Grumman

Friday, May 31, 2019

NASA Selects Three Robotic Lunar Missions to Help It Prep for the Crewed Artemis Moon Flights...

An artist's concept of a commercial lunar lander on the surface of the Moon.
NASA

NASA Selects First Commercial Moon Landing Services for Artemis Program (Press Release)

NASA has selected three commercial Moon landing service providers that will deliver science and technology payloads under Commercial Lunar Payload Services (CLPS) as part of the Artemis program. Each commercial lander will carry NASA-provided payloads that will conduct science investigations and demonstrate advanced technologies on the lunar surface, paving the way for NASA astronauts to land on the lunar surface by 2024.

“Our selection of these U.S. commercial landing service providers represents America’s return to the Moon’s surface for the first time in decades, and it’s a huge step forward for our Artemis lunar exploration plans,” said NASA Administrator Jim Bridenstine. ”Next year, our initial science and technology research will be on the lunar surface, which will help support sending the first woman and the next man to the Moon in five years. Investing in these commercial landing services also is another strong step to build a commercial space economy beyond low-Earth orbit.”

As part of their submissions, each partner proposed flying specific NASA instruments to the lunar surface. By the end of the summer, NASA will determine which payloads will fly on each flight. The potential payloads include instruments that will conduct new lunar science, pinpoint lander position, measure the lunar radiation environment, assess how lander and astronaut activity affects the Moon, and assist with navigation precision, among other capabilities.

The selections are:

- Astrobotic of Pittsburgh has been awarded $79.5 million and has proposed to fly as many as 14 payloads to Lacus Mortis, a large crater on the near side of the Moon, by July 2021.

- Intuitive Machines of Houston has been awarded $77 million. The company has proposed to fly as many as five payloads to Oceanus Procellarum, a scientifically intriguing dark spot on the Moon, by July 2021.

- Orbit Beyond of Edison, New Jersey, has been awarded $97 million and has proposed to fly as many as four payloads to Mare Imbrium, a lava plain in one of the Moon’s craters, by September 2020.

“These landers are just the beginning of exciting commercial partnerships that will bring us closer to solving the many scientific mysteries of our Moon, our solar system, and beyond,” said Thomas Zurbuchen, associate administrator of NASA’s Science Mission Directorate in Washington. “What we learn will not only change our view of the universe, but also prepare our human missions to the Moon and eventually Mars.”

Each partner is providing end-to-end commercial payload delivery services to NASA, including payload integration and operations, launch from Earth and landing on the surface of the Moon. These early missions will enable important technology demonstrations that will inform the development of future landers and other exploration systems needed for humans to return to the lunar surface. They also will help prepare the agency to send astronauts to explore Mars.

“This announcement starts a significant step in NASA's collaboration with our commercial partners,” said Chris Culbert, CLPS program manager at NASA’s Johnson Space Center in Houston. “NASA is committed to working with industry to enable the next round of lunar exploration. The companies we have selected represent a diverse community of exciting small American companies, each with their own unique, innovative approach to getting to the Moon. We look forward to working with them to have our payloads delivered and opening the door for returning humans to the Moon.”

As additional science, technology demonstration, and human exploration requirements for payloads develop, a request for task order bids will go to all current CLPS contractors. All nine companies initially selected in November 2018 for CLPS will be eligible to bid on subsequent task orders.

Charged with returning astronauts to the Moon within five years, NASA’s Artemis lunar exploration plans are based on a two-phase approach: the first is focused on speed – landing astronauts on the Moon by 2024 – while the second will establish a sustained human presence on and around the Moon by 2028. We will use what we learn on the Moon to prepare to send astronauts to Mars.

****

An artist's concept of Astrobotic's lunar lander on the surface of the Moon.
Astrobotic

An artist's concept of Intuitive Machines' lunar lander on the surface of the Moon.
Intuitive Machines

An artist's concept of Orbit Beyond's lunar lander.
Orbit Beyond

Thursday, May 30, 2019

Orion Update: Making Some Noise for the European Service Module...

The European Service Module for the Orion EM-1 spacecraft undergoes acoustics testing at NASA's Kennedy Space Center in Florida.
NASA / Frank Michaux

Surround Sound - Orion Service Module for Artemis 1 Undergoes Acoustic Tests (News Release)

Orion’s service module for NASA’s Artemis 1 mission completed acoustic testing inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida last week. The tests were the latest step in preparing for the agency’s first uncrewed flight test of Orion on the Space Launch System (SLS) rocket.

Teams completed the test May 25, 2019, and technicians will analyze the data collected during the tests to check for flaws uncovered by the acoustic environment. During the testing, engineers secured the service module inside the test cell and then attached microphones, strain gauges and accelerometers to it. They conducted a series of five tests, with acoustic levels ranging from 128 to 140 decibels – as loud as a jet engine during takeoff.

Artemis 1 will be the first mission launching Orion on the SLS rocket from Kennedy’s Launch Pad 39B. The mission will take Orion thousands of miles past the Moon on an approximately three-week test flight. Orion will return to Earth and splashdown in the Pacific Ocean off the coast of California, where it will be retrieved and returned to Kennedy.

Source: NASA.Gov

Wednesday, May 29, 2019

SLS Update: The Rocket's Core Stage Booster Is 80% Complete...

The Space Launch System's core stage booster is 80% complete inside NASA's Michoud Assembly Facility in New Orleans, Louisiana.
NASA / Eric Bordelon

NASA Makes Progress Assembling Massive Space Launch System Rocket Stage (News Release)

NASA and Boeing technicians have begun the second of three major activities to join the large structural parts of the core stage for NASA’s deep space rocket, the Space Launch System. When this task is completed, four of the five major core stage structures -- most of the massive 212-foot stage-- will be assembled. Boeing and NASA will add the engine section and the four RS-25 engines to complete assembly of the core stage. This stage and its four RS-25 engines will produce 2 million pounds of thrust to help send the Artemis 1 Mission, the first integrated flight of SLS and the Orion spacecraft to the Moon.

Crews at NASA’s Michoud Assembly Facility in New Orleans moved the liquid hydrogen tank to the final assembly area at the facility to horizontally connect the massive propellant tank to the top of the core stage, which is made up of the forward skirt, the liquid oxygen tank and the intertank. They moved the forward structure to the final assembly area earlier this spring. Together, the forward structure combined with the liquid hydrogen tank is approximately 190-feet-long, and thus, makes up most of the core stage. The entire core stage will be the largest rocket stage NASA has ever built since manufacturing the Saturn V rocket stages in the same Michoud rocket factory.

NASA is working to land the first woman and next man on the Moon by 2024. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon. SLS is the only rocket that can send Orion, astronauts and supplies to the Moon on a single mission.

Source: NASA.Gov

Thursday, May 23, 2019

Gateway Update: The First Component of NASA's Lunar Space Station Gets a Contractor...

An artist's concept of the power and propulsion element for NASA's lunar Gateway orbiting the Moon.
NASA

NASA Awards Artemis Contract for Lunar Gateway Power, Propulsion (Press Release)

In one of the first steps of the agency’s Artemis lunar exploration plans, NASA announced on Thursday the selection of Maxar Technologies, formerly SSL, in Westminster, Colorado, to develop and demonstrate power, propulsion and communications capabilities for NASA’s lunar Gateway.

“The power and propulsion element is the foundation of Gateway and a fine example of how partnerships with U.S. companies can help expedite NASA’s return to the Moon with the first woman and next man by 2024,” said NASA Administrator Jim Bridenstine. “It will be the key component upon which we will build our lunar Gateway outpost, the cornerstone of NASA’s sustainable and reusable Artemis exploration architecture on and around the Moon.”

The power and propulsion element is a high-power, 50-kilowatt solar electric propulsion spacecraft – three times more powerful than current capabilities. As a mobile command and service module, the Gateway provides a communications relay for human and robotic expeditions to the lunar surface, starting at the Moon’s South Pole.

This firm-fixed price award includes an indefinite-delivery/indefinite-quantity portion and carries a maximum total value of $375 million. The contract begins with a 12-month base period of performance and is followed by a 26-month option, a 14-month option and two 12-month options.

Spacecraft design will be completed during the base period, after which the exercise of options will provide for the development, launch, and in-space flight demonstration. The flight demonstration will last as long as one year, during which the spacecraft will be fully owned and operated by Maxar. Following a successful demonstration, NASA will have the option to acquire the spacecraft for use as the first element of the Gateway. NASA is targeting launch of the power and propulsion element on a commercial rocket in late 2022.

“We’re excited to demonstrate our newest technology on the power and propulsion element. Solar electric propulsion is extremely efficient, making it perfect for the Gateway,” said Mike Barrett, power and propulsion element project manager at NASA’s Glenn Research Center in Cleveland. “This system requires much less propellant than traditional chemical systems, which will allow the Gateway to move more mass around the Moon, like a human landing system and large modules for living and working in orbit.”

Charged with returning to the Moon within five years, NASA’s lunar exploration plans are based on a two-phase approach: the first is focused on speed – landing on the Moon by 2024 – while the second will establish a sustained human presence on and around the Moon by 2028. We then will use what we learn on the Moon to prepare to send astronauts to Mars.

****

Another art concept of the power and propulsion element for NASA's lunar Gateway orbiting the Moon.
NASA

Tuesday, May 14, 2019

Photo of the Day: Making Some Noise for the Orion EM-1 Capsule...

The Orion capsule that will fly on Exploration Mission-1 undergoes acoustics testing at NASA's Kennedy Space Center in Florida.
Radislav Sinyak

Good Vibrations: Orion Crew Module Undergoes Testing (News Release)

The Orion crew module for Exploration Mission-1 was blasted with 141 decibels of extreme vibrations during acoustics testing at the Kennedy Space Center, simulating what the vehicle will experience in space. Spacecraft response and sound pressure data were collected with microphones, strain gauges and accelerometers.

Orion is the spacecraft that will take astronauts on missions to deep space and will help enable astronauts to set foot on the Moon by 2024.

Source: NASA.Gov