Showing posts with label DRACO. Show all posts
Showing posts with label DRACO. Show all posts

Wednesday, July 26, 2023

A Spacecraft That Will Test Nuclear Propulsion in Earth Orbit Has Received Its Contractor...

An artist's concept of the DRACO spacecraft...which will be jointly developed by NASA and DARPA to test nuclear thermal propulsion technology.
DARPA

DARPA Kicks Off Design, Fabrication for DRACO Experimental NTR Vehicle (Press Release)

Advances collaboration with NASA on nuclear thermal rocket; finalizes Phase 2 agreement

DARPA, in collaboration with NASA, is advancing towards the goal of the world’s first in-orbit demonstration of a nuclear thermal rocket (NTR) engine via DRACO, the Demonstration Rocket for Agile Cislunar Operations. DARPA has finalized an agreement with Lockheed Martin for the company to begin work on the fabrication and design of the experimental NTR vehicle (X-NTRV) and its engine.

“The DRACO program aims to give the nation leap-ahead propulsion capability,” said Dr. Tabitha Dodson, program manager for the effort. “An NTR achieves high thrust similar to in-space chemical propulsion but is two-to-three-times more efficient. With a successful demonstration, we could significantly advance humanity’s means for going faster and farther in space and pave the way for the future deployment for all fission-based nuclear space technologies.”

In January, DARPA and NASA signed an agreement to collaborate on the NTR engine, with a focus on more efficiently and quickly transporting material through the cislunar domain and eventually, people to Mars.

The DRACO program takes advantage of the nation’s early investments in nuclear thermal technology via the previous Nuclear Engine for Rocket Vehicle Applications (NERVA) program, but with a new fuel option that presents fewer logistical hurdles. DARPA is using high-assay low-enriched uranium (HALEU) fuel, made possible via National Security Presidential Memorandum 20 (NSPM-20), which updated U.S. policy for the launch of space nuclear power and propulsion.

As an additional safety measure, DARPA will engineer the system so that the engine’s fission reactor will stay turned off until it reaches its designated orbit.

The U.S. Space Force will provide the launch vehicle that will take the X-NTRV into space in 2027. The Department of Energy will provide HALEU metal, to be processed into fuel by the performer.

BWX Technologies (BWXT), one of Lockheed Martin’s partners in the effort, will develop the nuclear reactor and fabricate the HALEU fuel.

Source: Defense Advanced Research Projects Agency

Sunday, January 29, 2023

A New In-Space Propulsion System Will Be Pursued for Crewed Trips to the Red Planet...

An artist's concept of the DRACO spacecraft...which will be jointly developed by NASA and DARPA to test nuclear thermal propulsion technology.
DARPA

NASA, DARPA Will Test Nuclear Engine for Future Mars Missions (Press Release - January 24)

NASA and the Defense Advanced Research Projects Agency (DARPA) announced Tuesday a collaboration to demonstrate a nuclear thermal rocket engine in space, an enabling capability for NASA crewed missions to Mars.

NASA and DARPA will partner on the Demonstration Rocket for Agile Cislunar Operations, or DRACO, program. The non-reimbursable agreement is designed to benefit both agencies, outlines roles, responsibilities and processes aimed at speeding up development efforts.

“NASA will work with our long-term partner, DARPA, to develop and demonstrate advanced nuclear thermal propulsion technology as soon as 2027. With the help of this new technology, astronauts could journey to and from deep space faster than ever – a major capability to prepare for crewed missions to Mars,” said NASA Administrator Bill Nelson. “Congratulations to both NASA and DARPA on this exciting investment, as we ignite the future, together.”

Using a nuclear thermal rocket allows for faster transit time, reducing risk for astronauts. Reducing transit time is a key component for human missions to Mars, as longer trips require more supplies and more robust systems.

Maturing faster, more efficient transportation technology will help NASA meet its Moon to Mars Objectives. Other benefits to space travel include increased science payload capacity and higher power for instrumentation and communication.

In a nuclear thermal rocket engine, a fission reactor is used to generate extremely high temperatures. The engine transfers the heat produced by the reactor to a liquid propellant, which is expanded and exhausted through a nozzle to propel the spacecraft.

Nuclear thermal rockets can be three or more times more efficient than conventional chemical propulsion.

“NASA has a long history of collaborating with DARPA on projects that enable our respective missions, such as in-space servicing,” said NASA Deputy Administrator Pam Melroy. “Expanding our partnership to nuclear propulsion will help drive forward NASA's goal to send humans to Mars.”

Under the agreement, NASA’s Space Technology Mission Directorate (STMD) will lead technical development of the nuclear thermal engine to be integrated with DARPA’s experimental spacecraft. DARPA is acting as the contracting authority for the development of the entire stage and the engine, which includes the reactor.

DARPA will lead the overall program including rocket systems integration and procurement, approvals, scheduling, and security, cover safety and liability, and ensure overall assembly and integration of the engine with the spacecraft. Over the course of the development, NASA and DARPA will collaborate on assembly of the engine before the in-space demonstration as early as 2027.

“DARPA and NASA have a long history of fruitful collaboration in advancing technologies for our respective goals, from the Saturn V rocket that took humans to the Moon for the first time to robotic servicing and refueling of satellites,” said Dr. Stefanie Tompkins, director, DARPA. “The space domain is critical to modern commerce, scientific discovery and national security. The ability to accomplish leap-ahead advances in space technology through the DRACO nuclear thermal rocket program will be essential for more efficiently and quickly transporting material to the Moon and eventually, people to Mars.”

The last nuclear thermal rocket engine tests conducted by the United States occurred more than 50 years ago under NASA’s Nuclear Engine for Rocket Vehicle Application and Rover projects.

“With this collaboration, we will leverage our expertise gained from many previous space nuclear power and propulsion projects,” said Jim Reuter, associate administrator for STMD. "Recent aerospace materials and engineering advancements are enabling a new era for space nuclear technology, and this flight demonstration will be a major achievement toward establishing a space transportation capability for an Earth-Moon economy.”

NASA, the Department of Energy (DOE), and industry are also developing advanced space nuclear technologies for multiple initiatives to harness power for space exploration. Through NASA’s Fission Surface Power project, DOE awarded three commercial design efforts to develop nuclear power plant concepts that could be used on the surface of the Moon and, later, Mars.

NASA and DOE are working on another commercial design effort to advance higher temperature fission fuels and reactor designs as part of a nuclear thermal propulsion engine. These design efforts are still under development to support a longer-range goal for increased engine performance and will not be used for the DRACO engine.

****