Saturday, June 29, 2019
SLS Update #2: NASA Moves Forward with Plans to Build a Second Mobile Launcher for the Space Launch System...
NASA / Kim Shiflett
NASA Awards Contract for Second Mobile Launcher at Kennedy Space Center (Press Release - June 25)
NASA has selected Bechtel National, Inc., of Reston, Virginia, to design and build a second mobile launcher, known as Mobile Launcher 2 or ML2, for Exploration Ground Systems at the agency’s Kennedy Space Center in Florida.
The cost-plus-award-fee end item contract has a total value of approximately $383 million. Bechtel National will complete the design, build, test, and commissioning of the mobile launcher within a 44-month period beginning July 1.
ML2 is the ground structure that will be used to assemble, process, and launch NASA’s Space Launch System (SLS) Block 1B rocket and Orion spacecraft from Launch Pad 39B at Kennedy for missions under NASA’s Moon to Mars exploration approach.
It will consist of a base structure, the platform for SLS, and a tower equipped with a number of connection lines called umbilicals, as well as launch accessories that will provide SLS and Orion with power, communications, coolant, fuel, and stabilization prior to launch.
Source: NASA.Gov
Friday, June 28, 2019
SLS Update: Four New Deliveries Arrive in New Orleans for the Artemis 1 Core Stage Booster...
Aerojet Rocketdyne
Artemis 1 Engines Delivered to NASA’s Michoud Assembly Facility (News Release)
Crews delivered the last of four RS-25 engines for Artemis 1, the first flight of NASA’s Space Launch System (SLS) rocket and the Orion spacecraft, from NASA’s Stennis Space Center near Bay St. Louis, Mississippi, to NASA’s Michoud Assembly Facility in New Orleans Thursday, June 27, 2019. The engines, located at the bottom of the rocket’s massive core stage, are fueled by liquid hydrogen and liquid oxygen.
When Artemis 1 launches to the Moon, the four RS-25 engines will fire nonstop for 8.5 minutes, providing the rocket 2 million of its 8.8 million pounds of maximum thrust at liftoff. Technicians from NASA and Aerojet Rocketdyne, the lead contractor for the engines, at Michoud will now prepare the four engines for installation to the rest of the core stage later this summer.
NASA is working to land the first woman and next man on the Moon by 2024. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon. SLS is the only rocket that can send Orion, astronauts and supplies to the Moon on a single mission.
Source: NASA.Gov
****
NASA
Labels:
EM-1,
Gateway,
MPCV,
Press Releases,
Space Launch System
Friday, June 7, 2019
ISS Update: A New Era Will Soon Begin for the Orbital Outpost...
NASA
NASA Opens International Space Station to New Commercial Opportunities, Private Astronauts (Press Release)
NASA is opening the International Space Station for commercial business so U.S. industry innovation and ingenuity can accelerate a thriving commercial economy in low-Earth orbit.
This move comes as NASA focuses full speed ahead on its goal of landing the first woman and next man on the Moon by 2024, where American companies also will play an essential role in establishing a sustainable presence.
NASA officials, including the agency’s Chief Financial Officer Jeff DeWit, will discuss details of the five-part near-term plan in a news conference at 10 a.m. EDT today. The news conference will air live on NASA Television and the agency’s website.
NASA will continue research and testing in low-Earth orbit to inform its lunar exploration plans, while also working with the private sector to test technologies, train astronauts and strengthen the burgeoning space economy. Providing expanded opportunities at the International Space Station to manufacture, market and promote commercial products and services will help catalyze and expand space exploration markets for many businesses.
The agency’s ultimate goal in low-Earth orbit is to partner with industry to achieve a strong ecosystem in which NASA is one of many customers purchasing services and capabilities at lower cost.
NASA’s plan addresses both the supply-side and demand-side for a new economy, enabling use of government resources for commercial activities, creating the opportunity for private astronaut missions to the space station, enabling commercial destinations in low-Earth orbit, identifying and pursuing activities that foster new and emerging markets, and quantifying NASA’s long-term demand for activities in low-Earth orbit.
Commercial Activities Aboard the Space Station
More than 50 companies already are conducting commercial research and development on the space station via the International Space Station U.S. National Laboratory, and their results are yielding great promise. In addition, NASA has worked with 11 different companies to install 14 commercial facilities on the station that support research and development projects for NASA and the ISS National Lab.
This effort is intended to broaden the scope of commercial activity on the space station beyond the ISS National Lab mandate, which is limited to research and development. A new NASA directive will enable commercial manufacturing and production and allow both NASA and private astronauts to conduct new commercial activities aboard the orbiting laboratory. The directive also sets prices for industry use of U.S. government resources on the space station for commercial and marketing activities.
Pricing released Friday is specific to commercial and marketing activities enabled by the new directive, reflects a representative cost to NASA, and is designed to encourage the emergence of new markets. As NASA learns how these new markets respond, the agency will reassess the pricing and amount of available resources approximately every six months and make adjustments as necessary.
To qualify, commercial and marketing activities must either:
- require the unique microgravity environment to enable manufacturing, production or development of a commercial application;
- have a connection to NASA’s mission; or
- support the development of a sustainable low-Earth orbit economy.
NASA’s directive enabling commercial and marketing activities aboard the space station addresses manufacturing, production, transportation, and marketing of commercial resources and goods, including products intended for commercial sale on Earth. NASA astronauts will be able to conduct coordinated, scheduled and reimbursable commercial and marketing activities consistent with government ethics requirements aboard the station.
To ensure a competitive market, NASA initially is making available five percent of the agency’s annual allocation of crew resources and cargo capability, including 90 hours of crew time and 175 kg of cargo launch capability, but will limit the amount provided to any one company.
Private Astronaut Missions
NASA also is enabling private astronaut missions of up to 30 days on the International Space Station to perform duties that fall into the approved commercial and marketing activities outlined in the directive released Friday, with the first mission as early as 2020. A new NASA Research Announcement focus area issued today outlines the path for those future private astronaut missions.
If supported by the market, the agency can accommodate up to two short-duration private astronaut missions per year to the International Space Station. These missions will be privately funded, dedicated commercial spaceflights. Private astronaut missions will use a U.S. spacecraft developed under NASA’s Commercial Crew Program.
The commercial entity developing the mission will determine crew composition for each mission and ensure private astronauts meet NASA’s medical standards and the training and certification procedures for International Space Station crew members. Market studies identified private astronaut missions to low-Earth orbit as a key element to demonstrate demand and reduce risk for future commercial destinations in low-Earth orbit.
Commercial Destinations in Low-Earth Orbit
In the long-term, NASA’s goal is to become one of many customers purchasing services from independent, commercial and free-flying habitable destinations in low-Earth orbit. A robust low-Earth orbit economy will need multiple commercial destinations, and NASA is partnering with industry to pursue dual paths to that objective that either go through the space station or directly to a free-flying destination.
As a first step, NASA is making one space station port and utilities available for industry to attach a commercial module to support commercial activities, and today is releasing a synopsis as Appendix I in NASA’s Next Space Technologies for Exploration Partnerships (NextSTEP) 2 Broad Agency Announcement (BAA). NASA expects to release the solicitation June 14, with awards made by the end of the fiscal year. The forward port of the station’s Harmony module will be available to industry for a finite period of time.
NASA will follow up with a synopsis for NextSTEP 2 Appendix K in July to partner with industry in the development of future free-flying commercial stations in low-Earth orbit.
Stimulate Sustainable Demand
NASA continues to seek and pursue opportunities to stimulate sustainable commercial demand in low-Earth orbit and, to that end, has added two new focus areas to the NASA Research Announcement soliciting proposals for commercial concepts. these focus areas include in-space manufacturing, regenerative medicine, bioengineering, and other fields that may lead to a scalable, financially self-sustaining demand for low-Earth orbit capabilities.
In addition, NASA is seeking targeted studies to better understand real and perceived barriers of potential new market entrants and to address broad ideas which could help stimulate demand. Successful proposals will define the path to broadly foster market growth, provide data-driven rationale to support the defined path, and lead to recommendations on which NASA, industry or other organizations could act. More details are available in the synopsis for NextSTEP 2 BAA Appendix J. NASA expects to release the solicitation for Appendix J on June 14 with awards made by the end of the fiscal year.
NASA also is working to increase the research and development community’s understanding of the potential value of microgravity research and the path to conducting research in low-Earth orbit by coordinating across the microgravity community to lower barriers to entry and refinement of research via drop towers, parabolic, and suborbital flights.
Quantify NASA’s Long-term Demand
NASA is providing a forecast of its minimum long-term, low-Earth orbit requirements, representing the type and amount of services that NASA intends to purchase when those services become commercially available. The goal is to reduce uncertainty for commercial destination providers about NASA as a customer, and to help them make decisions about which NASA requirements they are interested in fulfilling.
NASA also is providing details and estimated quantities for NASA crew accommodation, human research, biological and physical science research, technology demonstrations, and hosted science instruments. In addition, NASA intends to continue purchasing services for a national laboratory capability in low-Earth orbit. For example, NASA’s strategy research in the areas of space biology, physical sciences, and fundamental physics is driven by recommendations from the National Academy of Sciences (NAS). Fundamental research and applied exploration research are not mutually exclusive, and advances in one area often enable advancements in the other. NASA’s Space Life and Physical Sciences Research Applications division has identified the highest research priorities for long-term use of low-Earth orbit: in life sciences, the priorities are studies of plants, model organisms, and of the microbiome of the built environment; and in physical sciences, the priorities are studies into combustion and phase change-associated energy transfer.
To improve the agency’s five-part plan and its effectiveness, NASA is seeking feedback from industry and others through a request for information, with responses due by July 3.
For more than 18 years, humans have lived and worked aboard the International Space Station, conducting thousands of experiments in areas such as human research, biology, and physical science, as well as advanced technology development. Many of these experiments, conducted via the ISS National Lab, have been research and development with commercial objectives. New opportunities are needed to move beyond research and development, and the station will play an essential role in enabling those opportunities for new commercial markets needed to build a sustainable ecosystem in low-Earth orbit.
****
Monday, June 3, 2019
Artemis 1 Update: More Info on the Space Launch System's First Core Stage Booster...
NASA / Eric Bordelon
NASA Reaches New Milestone on Complex, Large Rocket (News Release)
NASA achieved a significant milestone in manufacturing the first large, complex core stage that will help power the Space Launch System (SLS) rocket on upcoming missions to the Moon. NASA and lead contractor Boeing have assembled four-fifths of the massive core stage needed to launch SLS and the Orion spacecraft on their first mission to the Moon: Artemis 1.
The Artemis program will send the first woman and the next man to the Moon by 2024 and develop a sustainable human presence on the Moon by 2028. The program takes its name from the twin sister of Apollo and goddess of the Moon in Greek mythology.
“This milestone brings the Space Launch System closer to launching the first Artemis mission,” said John Honeycutt, SLS program manager. “The SLS rocket team is laser focused on building the rocket not only for the first flight but also rockets for the second and third Artemis missions that will send astronauts to the Moon.”
At approximately 190 feet, about the size of 12 cars parked end-to-end, the stage in its current configuration is the largest rocket stage the agency has built since the Saturn V stages that first sent humans to the Moon nearly 50 years ago. The completed core stage, which includes two propellant tanks as well as four RS-25 engines, will tower at 212 feet. It, along with the twin five-segment solid rocket boosters, will produce the majority of the power to send the SLS and Orion to space.
“Building and assembling this massive integrated propulsion and avionics stage for the world’s most powerful rocket, the only launch vehicle that can return astronauts to the Moon, is an engineering feat,” said Julie Bassler, SLS stages manager. “To manufacture the Space Launch System, we are working with more than 1,000 companies across the country. It’s truly America’s rocket.”
This significant program milestone comes after crews completed the second of three major activities to join the liquid hydrogen fuel tank to the upper part of the core stage. The upper part is made up of three previously connected large structures: the forward skirt that houses the rocket’s flight computers, the liquid oxygen propellant tank, and the intertank that holds more avionics and attaches to the rocket’s powerful boosters. Technicians horizontally connected the liquid hydrogen tank to the intertank using 360 bolts. NASA and Boeing, the SLS prime contractor, will now complete outfitting the engine section before integrating it, along with the four RS-25 engines, to the rest of the stage, completing the immense core stage in its entirety.
In response to President Trump’s charge to return Americans to the Moon by 2024, engineers and technicians revised the core stage assembly plan to mate the individual structures horizontally rather than vertically. These milestones — combined with new production tools and the team’s responsiveness — keep core stage production on track for completion by the end of the year.
“NASA is constantly looking for ways to get work done more efficiently so that we can get astronauts landing on the Moon by 2024,” said Ben Birkenstock, the SLS stages vehicle assembly lead. “The NASA and Boeing team is learning while building this first core stage. The decision to integrate the core stage structures horizontally demonstrates our efforts to continuously improve our operations.”
The SLS team continues to make progress on other elements for the rocket’s first three missions. In April, the last of 16 RS-25 engines from the space shuttle program passed inspection, capping a 51-month acceptance test series at NASA’s Stennis Space Center near Bay St. Louis, Mississippi and clearing all engines suitable for flight. The manufacture and checkout of all 10 motor segments for the twin boosters on the first Artemis flight were completed in January. NASA and Northrop Grumman technicians in Promontory, Utah, applied insulation to all the booster segments for Artemis 2 in the spring. The solid rocket boosters and four RS-25 engines produce a combined thrust of 8.8 million pounds during launch and flight.
Other parts of the rocket for the first flight, like the launch vehicle stage adapter and the solid rocket boosters, will soon be delivered to NASA’s Kennedy Space Center in Florida. The interim cryogenic propulsion stage that will give NASA’s Orion spacecraft the push needed to get to the Moon and the adapter that will connect that stage to the spacecraft have already been delivered to Kennedy.
NASA is working to land the first woman and next man on the Moon by 2024. SLS and Orion, along with the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts and supplies to the Moon on a single mission.
Source: NASA.Gov
****
NASA
Northrop Grumman
Labels:
Apollo,
Artemis,
EM-1,
EM-2,
Gateway,
MPCV,
Press Releases,
Space Launch System
Subscribe to:
Posts (Atom)